By Bustamante, H. A. and Herzberg, D. E. and Rodriguez, A. R. and Werner, M. P., J Vet Sci, 2015
Description
Lameness is one of the most painful conditions that affects dairy cattle. This study was conducted to evaluate clinical signs and plasma concentration of several pain and stress biomarkers after oligofructose-induced lameness in dairy heifers. Lameness was induced using an oligofructose overload model in 12 non-pregnant heifers. Clinical parameters and blood samples were obtained at 48 and 24 h and at 6, 12, 24, 36 and 48 h after induction of lameness. Clinical parameters included heart rate, respiratory rate, ruminal frequency and lameness score. Plasma biomarkers included cortisol, haptoglobin, norepinephrine, beta-endorphin and substance P. Differences were observed in all parameters between control and treated heifers. The plasma concentration of biomarkers increased significantly in treated animals starting 6 h after induction of lameness, reaching maximum levels at 24 h for cortisol, 48 h for haptoglobin, 6 h for norepinephrine, 12 h for substance P and at 24 h for beta-endorphin. Overall, our results confirm that lameness associated pain induced using the oligofructose model induced changes in clinical parameters and plasma biomarkers of pain and stress in dairy heifers.
Lameness is one of the most painful conditions that affects dairy cattle. This study was conducted to evaluate clinical signs and plasma concentration of several pain and stress biomarkers after oligofructose-induced lameness in dairy heifers. Lameness was induced using an oligofructose overload model in 12 non-pregnant heifers. Clinical parameters and blood samples were obtained at 48 and 24 h and at 6, 12, 24, 36 and 48 h after induction of lameness. Clinical parameters included heart rate, respiratory rate, ruminal frequency and lameness score. Plasma biomarkers included cortisol, haptoglobin, norepinephrine, beta-endorphin and substance P. Differences were observed in all parameters between control and treated heifers. The plasma concentration of biomarkers increased significantly in treated animals starting 6 h after induction of lameness, reaching maximum levels at 24 h for cortisol, 48 h for haptoglobin, 6 h for norepinephrine, 12 h for substance P and at 24 h for beta-endorphin. Overall, our results confirm that lameness associated pain induced using the oligofructose model induced changes in clinical parameters and plasma biomarkers of pain and stress in dairy heifers.
We welcome and encourage discussion of our linked research papers. Registered users can post their comments here. New users' comments are moderated, so please allow a while for them to be published.