By Larson, R. L. and Renter, D. G. and Robert, B. and White, B. J., Computers and Electronics in Agriculture, 2009
Research Paper Web Link / URL:
http://www.sciencedirect.com/science/article/pii/S0168169909000490
http://www.sciencedirect.com/science/article/pii/S0168169909000490
Description
Cattle behavior is potentially a valuable indicator of health and well-being; however, natural movement patterns can be influenced by the presence of a human observer. A remote system could augment the ability of researchers, and eventually cattle producers, to monitor changes in cattle behavior. Constant video surveillance allows non-invasive behavior monitoring, but logging the movement patterns on individual animals over long periods of time is often cost prohibitive and labor intensive. Accelerometers record three-dimensional movement and could potentially be used to remotely monitor cattle behavior. These devices collect data based on pre-defined recording intervals, called epochs. Our objectives were to (1) determine if accelerometers can accurately document cattle behavior and (2) identify differences in classification accuracy among accelerometer epoch settings. Video-recorded observations and accelerometer data were collected from 15 crossbred beef calves and used to generate classification trees that predict behavior based on accelerometer data. Postural orientations were classified as lying or standing, while dynamic activities were classified as walking or a transition between activities. Video analysis was treated as the gold standard and logistic regression models were used to determine classification accuracy related to each activity and epoch setting. Classification of lying and standing activities by accelerometer illustrated excellent agreement with video (99.2% and 98.0% respectively); while walking classification accuracy was significantly (P < 0.01) lower (67.8%). Classification agreement was higher in the 3 s (98.1%) and 5 s (97.7%) epochs compared to the 10 s (85.4%) epoch. Overall, we found the accelerometers provided an accurate, remote measure of cattle behavior over the trial period, but that classification accuracy was affected by the specific behavior monitored and the reporting interval (epoch).
Cattle behavior is potentially a valuable indicator of health and well-being; however, natural movement patterns can be influenced by the presence of a human observer. A remote system could augment the ability of researchers, and eventually cattle producers, to monitor changes in cattle behavior. Constant video surveillance allows non-invasive behavior monitoring, but logging the movement patterns on individual animals over long periods of time is often cost prohibitive and labor intensive. Accelerometers record three-dimensional movement and could potentially be used to remotely monitor cattle behavior. These devices collect data based on pre-defined recording intervals, called epochs. Our objectives were to (1) determine if accelerometers can accurately document cattle behavior and (2) identify differences in classification accuracy among accelerometer epoch settings. Video-recorded observations and accelerometer data were collected from 15 crossbred beef calves and used to generate classification trees that predict behavior based on accelerometer data. Postural orientations were classified as lying or standing, while dynamic activities were classified as walking or a transition between activities. Video analysis was treated as the gold standard and logistic regression models were used to determine classification accuracy related to each activity and epoch setting. Classification of lying and standing activities by accelerometer illustrated excellent agreement with video (99.2% and 98.0% respectively); while walking classification accuracy was significantly (P < 0.01) lower (67.8%). Classification agreement was higher in the 3 s (98.1%) and 5 s (97.7%) epochs compared to the 10 s (85.4%) epoch. Overall, we found the accelerometers provided an accurate, remote measure of cattle behavior over the trial period, but that classification accuracy was affected by the specific behavior monitored and the reporting interval (epoch).
We welcome and encourage discussion of our linked research papers. Registered users can post their comments here. New users' comments are moderated, so please allow a while for them to be published.