By Beauchemin, K. A. and Yang, W. Z., Journal of Dairy Science, 2005
Description
A study was conducted to investigate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets containing corn silage as the sole forage type on feed intake, meal patterns, chewing activity, and rumen pH. The experiment was designed as a replicated 3 x 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Diets were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The physical effectiveness factors for the long (original), medium (rechopped once), and fine (rechopped twice) silages were determined using the Penn State Particle Separator and were 0.84, 0.73, and 0.67, respectively. The peNDF contents of the diets were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively. Increased forage particle length increased intake of peNDF but did not affect intake of DM or NDF. Number of chews (chews/d) and chewing time, including eating and ruminating time, were linearly increased with increasing dietary peNDF. Meal patterns were generally similar for all treatments, except that number of meals was quadratically increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Dietary peNDF content was moderately correlated to number of chews during eating (r=0.41) and to total chewing time (r=0.37). The present study demonstrates that increasing the peNDF content of diets increased chewing time, but increased chewing time did not necessarily reduce ruminal acidosis. Models that predict rumen pH should include both peNDF and fermentable OM intake. Dietary particle size, expressed as peNDF, was a reliable indicator of chewing activity.
A study was conducted to investigate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets containing corn silage as the sole forage type on feed intake, meal patterns, chewing activity, and rumen pH. The experiment was designed as a replicated 3 x 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Diets were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The physical effectiveness factors for the long (original), medium (rechopped once), and fine (rechopped twice) silages were determined using the Penn State Particle Separator and were 0.84, 0.73, and 0.67, respectively. The peNDF contents of the diets were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively. Increased forage particle length increased intake of peNDF but did not affect intake of DM or NDF. Number of chews (chews/d) and chewing time, including eating and ruminating time, were linearly increased with increasing dietary peNDF. Meal patterns were generally similar for all treatments, except that number of meals was quadratically increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Dietary peNDF content was moderately correlated to number of chews during eating (r=0.41) and to total chewing time (r=0.37). The present study demonstrates that increasing the peNDF content of diets increased chewing time, but increased chewing time did not necessarily reduce ruminal acidosis. Models that predict rumen pH should include both peNDF and fermentable OM intake. Dietary particle size, expressed as peNDF, was a reliable indicator of chewing activity.
We welcome and encourage discussion of our linked research papers. Registered users can post their comments here. New users' comments are moderated, so please allow a while for them to be published.